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Homogeneous and Bernoulli Equations

Sometimes differential equations may not appear to be in a solvable form. However, if we make an appropriate substitution, often the equations can be forced into forms which we can solve, much like the use of u substitution for integration. We must be careful to make the appropriate substitution. Two particular forms of equations lend themselves naturally to substitution.
Homogeneous Equations A function F(x,y) is said to be homogeneous if for some t 6= 0
F(tx,ty) = F(x,y).
That is to say that a function is homogeneous if replacing the variables by a scalar multiple does not change the equation. Please note that the term homogeneous is used for two different concepts in differential equations.
Examples

1. [image: ] is homogeneous since
[image: ]
2. [image: ] is homogeneous since
[image: ]
[image: ]
We say that a differential equation is homogeneous if it is of the form [image: ]) for a homogeneous function F(x,y). If this is the case, then we can make the substitution y = ux. After using this substitution, the equation can be solved as a seperable differential equation. After solving, we again use the substitution y = ux to express the answer as a function of x and y.
Example

1. [image: ]
We have already seen that the function above is homogeneous from the previous examples. As a result, this is a homogeneous differential equation. We will substitute y = ux. By the product rule, [image: ]. Making these substitutions we obtain
[image: ]
Now this equation must be separated.
[image: ]
Integrating this we get,
[image: ].
Finally we use that[image: ]to get our implicit solution [image: ].
Bernoulli Equations We say that a differential equation is a Bernoulli Equation if it takes one of the forms
[image: ].
These differential equations almost match the form required to be linear. By making a substitution, both of these types of equations can be made to be linear. Those of the first type require the substitution v = ym+1. Those of the second type require the substitution u = y1−n. Once these substitutions are made, the equation will be linear and may be solved accordingly.
Example

[image: ]
You can see that this is a Bernoulli equation of the second form. We make the substitution u = y1−4 = y−3. This gives [image: ]. The equation will be easier to manipulate if we multiply both sides by y−4. Our new equation will be[image: ].
Making the appropriate substitutions this becomes [image: ].
If we multiply by −3 we see that the equation is now linear in u and can be solved:
[image: ]
After undoing the u substitution, we have the solution
[image: ]
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