Seperable Equations A differential equation is called seperable if it is of the form

\[g(y)y' = f(x) \]

An equation is seperable if we can isolate all \(y \) terms on one side of the equation and all \(x \) terms on the other side. Equations of this type can be solved by integrating each side of the equation with respect to the appropriate variable.

Examples

1. \(y' = yx \)

 This equation is separable, as can be seen after dividing by \(y \). This gives \(\frac{y'}{y} = x \). Integrating both sides gives \(\ln y = x + C \implies y = e^{x+C} = Ce^x \). When we divided by \(y \), we tacitly assumed that \(y \neq 0 \). We must therefore check if \(y = 0 \) solves the differential equation. The solutions are then \(y = 0 \) and \(y = Ce^x \).

2. \(2xy^2 - x^4y' = 0 \)

 We can rearrange this equation to give \(\frac{2}{x^2} = \frac{y'}{y^2} \). This is separable, and the solution is revealed by integrating. \(\frac{1}{x^2} + C = \frac{1}{y} \implies y = \frac{x^2}{1+Cx^2} \).

First Order Linear Equations These differential equations take the general form

\[y' + p(x)y = q(x) \]

where \(p(x) \) and \(q(x) \) are functions of \(x \) only. The following are examples of linear equations.

1. \(y' + x^2y = 0 \)
2. \(y' + \cos(x) \ y = x^2 \)
3. \(y' + \frac{y}{1-x} = e^x \)

The following equations would not qualify as linear.

1. \((y')^2 - \sin(x) \ y = 0 \)
2. \(y' + \frac{x^2}{y} = 2x \)
3. \(y' + e^x y = y^2 \)
To solve these equations, we use the integrating factor \(\mu = e^{\int p(x) \, dx} \). With this integrating factor, the solution can then be written as \(y = \frac{1}{\mu} \int \mu \, q(x) \, dx \).

Examples

1. \(y' + \frac{y}{x} = 2e^{x^2} \)

 In this case, \(p(x) = \frac{1}{x} \) and \(\mu = e^{\int \frac{1}{x} \, dx} = e^{\ln x} = x \). Using our above equation for \(y \) gives the solution \(y = \frac{1}{x} \int 2xe^{x^2} \, dx = \frac{1}{x}(e^{x^2} + C) \)

2. \(y' + y \cos x = \cos x \)

 In this case, \(p(x) = \cos x \) and \(\mu = e^{\int \cos x \, dx} = e^{\sin x} \). Again, applying the solution equation gives \(y = \frac{1}{\sin x} \int \cos x \, e^{\sin x} \, dx = e^{-\sin x}(e^{\sin x} + C) = 1 + Ce^{-\sin x} \)

Exact Equations

An equation of the form

\[M \, dx + N \, dy = 0 \]

with \(M \) and \(N \) functions of \(x \) and \(y \), is said to be exact if \(\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x} \).

To solve an exact equation, we follow these steps:

1. Our solution will be \(F(x, y) = \Psi(y) + \int M \, dx = C \), where \(\Psi(y) \) is a function entirely of \(y \) to be found later.

2. Calculate the integral \(\int M \, dx \).

3. Take the derivative of \(F(x, y) \) with respect to \(y \). Set this equal to \(N \) and solve for \(\Psi'(y) \).

 \[\Psi'(y) = N - \frac{\partial \int M \, dx}{\partial y} \]

4. Find \(\Psi(y) \) by integrating \(\Psi'(y) \) with respect to \(y \). \(\Psi(y) = \int \Psi'(y) \, dy \).

5. Plug \(\Psi(y) \) into \(F(x, y) \) to obtain the solution.

Examples

1. \(2xy \, dx + (x^2 + 2y) \, dy = 0 \)

 Here \(M = 2xy \) and \(N = x^2 + 2y \). We see the equation is exact since \(\frac{\partial M}{\partial y} = 2x = \frac{\partial N}{\partial x} \).

 \[F(x, y) = \int 2xy \, dx + \Psi(y) = x^2y + \Psi(y) \]

 Now we solve for \(\Psi(y) \).

 \[\Psi'(y) = N - \frac{\partial(x^2y)}{\partial y} = (x^2 + 2y) - x^2 \implies \Psi'(y) = 2y \]

 Integrating we see that \(\Psi(y) = y^2 \). Our solution is then \(x^2y + y^2 = c \).
2. \((2xy - 9x^2) \, dx + (2y + x^2 + 1) \, dy = 0\)

Here \(M = 2xy - 9x^2\) and \(N = 2y + x^2 + 1\). We see the equation is exact since \(\frac{\partial M}{\partial y} = 2x = \frac{\partial N}{\partial x}\).

\[F(x, y) = \int 2xy - 9x^2 \, dx + \Psi(y) = x^2y - 3x^3 + \Psi(y).\]

Next, solve for \(\Psi(y)\).

\[\Psi'(y) = N - \frac{\partial (x^2y - 3x^3)}{\partial y} = (2y + x^2 + 1) - x^2 = 2y + 1.\]

Integrate this to see that \(\Psi(y) = y^2 + y\).

The solution is then \(F(x, y) = x^2y - 3x^3 + y^2 + y = C\).

Making Equations Exact

Occasionally, one will encounter an equation of the form

\[M \, dx + N \, dy = 0\]

that does not meet the criterion for exactness. In certain situations, we can find an appropriate integrating factor which will transform this into an exact equation.

Case 1 Integrating factors of \(x\) only: If the quantity \(p(x) = \frac{\partial M}{\partial y} - \frac{\partial N}{\partial x}\) is a function with no occurrences of \(y\), then \(\mu = e^{\int p(x) \, dx}\) is an integrating factor for the differential equation.

Case 2 Integrating factors of \(y\) only: If the quantity \(p(y) = \frac{\partial N}{\partial x} - \frac{\partial M}{\partial y}\) is a function with no occurrences of \(x\), then \(\mu = e^{\int p(y) \, dy}\) is an integrating factor for the differential equation.

When the integrating factor \(\mu\) exists, one may multiply the differential equation by \(\mu\) to created an exact equation.

Examples

1. \((y^2(x^2 + 1) + xy) \, dx + (2xy + 1) \, dy = 0\)

 Here \(\frac{\partial M}{\partial y} = 2y(x^2 + 1) + x\) and \(\frac{\partial N}{\partial x} = 2y\). As we can see, this equation is not exact. We will search for an integrating factor. \(\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x} = \frac{2y(x^2 + 1) + x - 2y}{2y + 1} = \frac{2yx^2 + x}{2y + 1} = x\). This a function entirely of \(x\) so that \(\mu = e^{\int x \, dx} = e^{\frac{x^2}{2}}\) will be an integrating factor.

 Multiply the initial equation by \(\mu\) to give \((e^{\frac{x^2}{2}}y^2(x^2 + 1) + e^{\frac{x^2}{2}}xy) \, dx + (2e^{\frac{x^2}{2}}xy + e^{\frac{x^2}{2}}) \, dy = 0\).

2. \((x^2y + 2y^2 \sin x) \, dx + (\frac{2}{3}x^3 - 6y \cos x) \, dy = 0\)

 The equation is not exact since \(\frac{\partial M}{\partial y} = x^2 + 4y \sin x\) and \(\frac{\partial N}{\partial x} = 2x^3 + 6y \sin x\). Now attempt to find an integrating factor.

 \[\frac{\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y}}{M} = \frac{2x^2 + 6y \sin x - x^2 - 4y \sin x}{x^2y + 2y^2 \sin x} = \frac{x^2 + 2y \sin x}{x^2y + 2y^2 \sin x} = \frac{1}{y}.
\]
This is a function entirely of y so the equation has an integrating factor of the form $e^{\int \frac{1}{y} \, dy} = e^{\ln y} = y$.

Multiply the initial equation by y to give $(x^2y^2 + 2y^3\sin x) \, dx + \left(\frac{2}{3}x^3y - 6y^2\cos x\right) \, dy = 0$. Now $\frac{\partial M}{\partial y} = 2x^2y + 6y^2\sin x = \frac{\partial N}{\partial x}$. As we can see, this equation is now exact and can be solved accordingly.