Useful Physics Formulas

BCCC Tutoring Center
This handout highlights some of frequently encountered formulas found in Physics I and Physics A.

Please note that most of the formulas assume that a quantity, such as acceleration, is constant. To deal with changing quantities the Calculus must be employed.

Kinematics Equations

$$
\begin{array}{ccc}
v_{\text {avg }}=\frac{x-x_{0}}{t} & a_{\text {avg }}=\frac{v-v_{0}}{t} & v=v_{0}+a t \\
x=x_{0}+v_{0} t+\frac{1}{2} a t^{2} & v^{2}=v_{0}^{2}+2 a\left(x-x_{0}\right) & \text { Uniform Circular Motion: } a_{R}=\frac{v^{2}}{r}
\end{array}
$$

Force and Work

$$
\begin{array}{ccc}
F_{\text {net }}=\Sigma F_{i}=m a & F_{\text {fr }}=\mu F_{N} & G=6.67 \times 10^{-11} \frac{\mathrm{Nm}^{2}}{\mathrm{~kg}^{2}} \\
F_{G}=G \frac{m_{1} m_{2}}{r^{2}} & W=F d & F_{\text {spring }}=-k x
\end{array}
$$

Energy and Power

$$
\begin{array}{ccc}
K E=\frac{1}{2} m v^{2} & U_{\mathrm{grav}}=m g y & U_{\text {spring }}=\frac{1}{2} k x^{2} \\
W_{\text {net }}=\Delta K E & \Delta K E=-\Delta U & \Sigma \text { Energy }_{\text {Initial }}=\Sigma \text { Energy }_{\text {Final }} \\
U(r)=-\frac{G m M}{r} \text { for } r>r_{M} & P_{\text {avg }}=\frac{W}{t} & e=\frac{P_{\text {out }}}{P_{\text {in }}} \\
v_{\text {esc }}=\sqrt{\frac{2 G M}{r}} & & K E_{\text {rotation }}=\frac{1}{2} I \omega^{2}
\end{array}
$$

Momentum

$$
p=m v
$$

$$
F_{\mathrm{net}}=\frac{d p}{d t}
$$

$$
p_{1}+p_{2}=p_{1}^{\prime}+p_{2}^{\prime}
$$

Angular Quantities

$$
\begin{array}{cc}
\omega_{\mathrm{avg}}=\frac{\Delta \theta}{\Delta t} & \alpha_{\mathrm{avg}}=\frac{\Delta \omega}{\Delta t} \\
a_{\mathrm{tan}}=R \alpha & \omega=\omega_{0}+\alpha t \\
\omega^{2}=\omega_{0}^{2}+2 \alpha \theta & \tau=m R^{2} \alpha \\
I=I_{\mathrm{cm}}+M h^{2} & L_{\text {intitial }}=L_{\mathrm{final}} \\
& \\
& \text { Harmonic Motion }
\end{array}
$$

$$
v=R \omega
$$

$$
\theta=\theta_{0}+\omega_{0} t+\frac{1}{2} \alpha t^{2}
$$

$$
\tau_{\text {net }}=\Sigma \tau=I \alpha
$$

$$
L=I \omega
$$

$$
\begin{array}{ccc}
T=\frac{1}{f} & x=A \cos (\omega t+\phi) & \omega^{2}=\frac{k}{m} \\
\omega=2 \pi f & f=\frac{1}{2 \pi} \sqrt{\frac{m}{k}} & F_{\text {damping }}=-b v \\
x=A e^{-\alpha t} \cos \left(\omega^{\prime} t\right) & \alpha=\frac{b}{2 m} & \omega^{\prime}=\sqrt{\frac{k}{m}-\frac{b^{2}}{4 m^{2}}}
\end{array}
$$

Thermodynamics

$$
\begin{array}{lll}
\Delta L=\alpha L_{0} \Delta T & \Delta V=\beta V_{0} \Delta T & P V=n R T \\
\frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}} & P V=N k T & Q=m c \Delta T \\
\Delta U=Q-W & K_{\text {avg }}=\frac{3}{2} k T & Q=m L
\end{array}
$$

