Rules for Exponents and Logarithms

Properties of Exponents

1. Exponentiation by Zero:

$$x^0 = 1$$

$$x^0 = 1$$
 $-x^0 = -1$

2. Negative Exponents:

$$x^{-a} = \frac{1}{x^a}$$

$$x^a = \frac{1}{x^{-a}}$$

$$\frac{x^{-a}}{y^{-b}} = \frac{y^b}{x^a}$$

$$x^{-a} = \frac{1}{x^a} \qquad \qquad x^a = \frac{1}{x^{-a}} \qquad \qquad \frac{x^{-a}}{y^{-b}} = \frac{y^b}{x^a} \qquad \qquad \left(\frac{x}{y}\right)^{-a} = \left(\frac{y}{x}\right)^a$$

3. Product Rule:

$$x^a \cdot x^b = x^{a+b}$$

4. Quotient Rule:

$$\frac{x^a}{x^b} = x^{a-b} = \frac{1}{x^{b-a}}$$

5. Power Rules:

$$(x^a)^b = x^{a \cdot b}$$

$$(x^a)^b = x^{a \cdot b} \qquad (xy)^a = x^a \cdot y^a$$

$$\left(\frac{x}{y}\right)^a = \frac{x^a}{y^a}$$

$$\sqrt[a]{x^b} = x^{\frac{b}{a}} = \sqrt[a]{x^b}$$

NB: If *n* is odd, then $-x^n \neq (-x)^n$

Properties of Logarithms

1. Definition:

$$n=log_b(m)$$
 is, by definition, equivalent to $b^n=m$
Note: $ln(x)=log_e(x)$ and $log(x)=log_{10}(x)$

2. Zero Property:

$$log_b(1) = 0$$

3. Identity Property:

$$log_b(b) = 1$$

4. Inverse Rules:

$$log_b(b^m) = m$$
 $b^{log_b(m)} = m$

5. Product Rule:

$$log_b(m\cdot n) = log_b(m) + \ log_b(n)$$

6. Quotient Rule:

$$log_b\left(\frac{m}{n}\right) = log_b(m) - log_b(n)$$

7. Exponent Rule:

$$log_b(m^a) = a \cdot log_b(m)$$

8. Change of Base:

$$log_b(m) = \frac{log_a(m)}{log_a(b)}$$