Summary of Convergence and Divergence Tests for Infinite Series

Test	Series	Convergence or Divergence	Comments	When to Use Strategies
<i>n</i> th term test for divergence	$\sum_{n=1}^{\infty} a_n$	Diverges if $\lim_{n \to \infty} a_n \neq 0$	Inconclusive if $\lim_{n \to \infty} a_n = 0$	If, at glance, $\lim_{n\to\infty} a_n \neq 0$, then use <i>n</i> th term test
Geometric Series	$\sum_{n=1}^{\infty} \operatorname{ar}^{n-1}$	Converges if $ r < 1$ Diverges if $ r \ge 1$	If the series converges, $\sum_{n=1}^{\infty} ar^{n-1} = \frac{a}{1-r}$	If series has form $\sum_{n=1}^{\infty} ar^{n-1}$ or $\sum_{n=1}^{\infty} ar^{n}$
p-series	$\sum_{n=1}^{\infty} \frac{1}{n^p}$	Converges if $p > 1$ Diverges if $p \le 1$		If series has form $\sum_{n=1}^{\infty} \frac{1}{n^p}$
Integral Test	$ \sum_{\substack{n=1\\n^{p}}} \frac{1}{n^{p}} $ $ \sum_{n=1}^{\infty} a_{n} $ $ a_{n} = f(n) $	Converges if $\int_{1}^{\infty} f(n) dn$ converges Diverges if $\int_{1}^{\infty} f(n) dn$ diverges	The function <i>f(n)</i> must be a continues, positive, and decreasing.	If $a_n = f(n)$, and $\int_1^{\infty} f(n) dn$ is easily evaluated. Hypotheses must be satisfied
Individual Comparison Test	$\sum_{n=1}^{\infty} a_n \text{ given}$ $\sum_{n=1}^{\infty} b_n \text{ comparison series}$	If $\sum_{n=1}^{\infty} b_n$ converges and $a_n \le b_n$ for every n, then $\sum_{n=1}^{\infty} a_n$ also converges If $\sum_{n=1}^{\infty} b_n$ diverges and $b_n \le a_n$ for every n, then $\sum_{n=1}^{\infty} a_n$ also diverges	The comparison series $(\sum_{n=1}^{\infty} b_n)$ must be supplied by you. To prove convergence, the comparison series must converge and be a larger series. To prove divergence, the comparison series must diverge and be a smaller series	If the series has a form similar to that of a p- series or geometric series. In particular, if a_n is a rational function or is algebraic (features roots of polynomials), then the series should be compared to a p- series.
Limit Comparison Test	$\sum_{n=1}^{\infty}a_n$ given $\sum_{n=1}^{\infty}b_n$ comparison series	If $\lim_{n \to \infty} \frac{a_n}{b_n} = L$ for some positive real number <i>L</i> , then both series converge or both diverge.	The comparison series $(\sum_{n=1}^{\infty} b_n)$ must be supplied by you. To prove convergence, the comparison series must converge To prove divergence, the comparison series must diverge	If determining a bounded sequence proves to be difficult, then Limit Comparison Test should be used over the Individual Comparison Test

Test	Series	Convergence or Divergence	Comments	When to use Strategies
Ratio Test	$\sum_{n=1}^{\infty} a_n$	$\lim_{n \to \infty} \left \frac{a_{n+1}}{a_n} \right = L$ If $L < 1$ then the series converges absolutely If $L > 1$ (or ∞) then the series diverges	Inconclusive if $L = 1$	Series that involve factorials or other products, such as a constant raised to the <i>n</i> th power
Root Test	$\sum_{n=1}^{\infty} a_n$	$\lim_{n \to \infty} \sqrt[n]{a_n} = L$ If $L < 1$ then the series converges absolutely If $L > 1$ (or ∞) then the series diverges	Inconclusive if $L = 1$. Useful when the nth term involves nth powers.	If a_n is of the form $(b_n)^n$
Alternating Series test	$\sum_{n=1}^{\infty} (-1)^n a_n$	Converges if: $a_n \ge 0$ $a_{n+1} \le a_n$ $\lim_{n \to \infty} a_n = 0$	Applies only to alternating series.	If of the form $\sum_{n=1}^{\infty} (-1)^n a_n$ or $\sum_{n=1}^{\infty} (-1)^{n-1} a_n$
Absolute Convergence	$\sum_{n=1}^{\infty} a_n$	If $\sum_{n=1}^{\infty} a_n $ converges then $\sum_{n=1}^{\infty} a_n$ converges absolutely.	If a series converges but does not converge absolutely, it conditionally converges.	Used if there are negative terms present in the series
Telescoping Series	$\sum_{k=1}^{\infty} \frac{1}{k(k+1)}$	$S_n = \sum_{k=1}^n \frac{1}{k(k+1)}$ Converges if $\lim_{n \to \infty} S_n = \mathbb{R}$	Can be rewritten using partial fraction decomposition. When finding the partial sum, many of the terms will cancel out.	No set form. Be careful to make sure all terms will cancel before determining convergence or divergence.