CHAPTER 1

Section 1.1

Data Sets

Population (parameter is numerical characteristic) Sample (statistic is numerical characteristic)

Branches of Statistics

Descriptive and Inferential

Section 1.2

Types of Data

Qualitative and Quantitative

Levels of Measure

nominal, ordinal, interval, and ratio

Section 1.3

Data Collection Methods

- 1. Observational Study
- 2. Experiment

- 3. Simulation
- 4. Survey

Types of Sampling Techniques

- 1. Random sample
- 2. Stratified sample
- 3. Cluster sample
- 4. Systematic sample
- 5. Convenience sample

CHAPTER 2

Section 2.1

Frequency Distribution Columns

Class, Class Boundaries, Frequency, Midpoint, Relative Frequency, Cumulative Frequency.

Class Width =
$$\frac{\text{range}}{\# \text{ of classes}}$$

$$\mathbf{Midpoint} = \frac{\text{lower limit+upper limit}}{2}$$

Relative Frequency = $\frac{\text{class frequency}}{\text{sample size}(n)}$

Frequency Histogram (horizontal = midpoints, vertical = frequencies)

Section 2.3

Pop. Mean: $\mu = \frac{\sum X}{N}$ Sample Mean: $\overline{X} = \frac{\sum X}{n}$ Weighted Mean: $\overline{x} = \frac{\sum (x \cdot w)}{\sum w}$

Mean of Grouped Data (mean of a frequency distribution)

$$\overline{x} = \frac{\sum (x \cdot f)}{n}$$
 x = midpoints, f = frequencies, n = $\sum f$

Section 2.4

Population deviation of $x = x - \mu$ Sample deviation of $x = x - \overline{X}$ Sum of Squares: $\sum (x - \mu)^2$

Population Standard Deviation:

Sample Standard Deviation:

$$\sigma = \sqrt{\frac{\sum (x - \mu)^2}{N}}$$

$$s = \sqrt{\frac{\sum (x - \bar{x})^2}{n - 1}}$$

Calculator: Computing Standard Deviation

To enter the data list into the calculator: STAT \rightarrow EDIT Menu \rightarrow enter data into L₁ To compute mean and standard deviation STAT \rightarrow CALC Menu \rightarrow 1:1 Var Stats

Empirical Rule

Chebychev's Theorem

The portion of any data set lying within K (K > 1) standard deviations from the mean is

at least $1 - \frac{1}{k^2}$

If K = 2 then at least 75% of data lies within 2 standard deviation of the mean. If K = 3 then at least 88.9% of data lies within 3 standard deviations of the mean.

Standard Deviation of Grouped Data (s.d. of a frequency distribution)

 $S = \sqrt{\frac{\sum (x - \bar{x})^2 \bullet f}{n - 1}}$

Calculator: L_1 = midpoints (x-values), L_2 = frequencies; then use 1-var stats then L_1, L_2

Section 2.5 $IQR = Q_3 - Q_1$ Outlier: any entry beyond: $Q_1 - 1.5(IQR)$ or $Q_3 + 1.5(IQR)$

Percentile of x = $\frac{\text{# of data values less than x}}{\text{total number of data values}} \cdot 100$

z-score = $\frac{x-\mu}{\sigma}$ (A z-score is considered unusual if it is outside of the -2 to 2 range)

CHAPTER 3

Section 3.1

Fundamental Counting Principle: multiple events occurring in sequence m•n ways

Classical (Theoretical) Probability $P(E) = \frac{\# \text{ of outcomes in event } E}{\# \text{ of outcomes in sample space}}$

Empirical Probability				
	frequency of event	_	f	
P(E) =	total frequency	_	n	

Compliment: P(E)' = 1 - P(E)

<u>Section 3.2</u> Independent Events: P(B|A) = P(B) and P(A|B) = P(A)

Multiplication Rule(probability that two events will occur in sequence) $P(A \text{ and } B) = P(A) \cdot P(B|A)$ independent events: $P(A \text{ and } B) = P(A) \cdot P(B)$

Section 3.3 Addition Rule P(A or B) = P(A) + P(B) - P(A and B)

P(A or B) = P(A) + P(B) - P(A and B) mutually exclusive: P(A or B) = P(A) + P(B)

CHAPTER 4

Section 4.1 Mean of a Discrete Probability Distribution: $\mu = \sum x \cdot p(x)$

Standard Deviation of a Discrete Probability Distribution (Discr. Random Variable) $\sigma = \sqrt{\sum(x - \mu)^2 \cdot p(x)}$

Calculator for Standard Deviation of Discrete Probability Distribution:

 L_1 – discrete random variables (x); L_2 – probabilities p(x); then 1-Var stats then L_1 , L_2

Expected Value: $E(x) = \mu = \sum x \cdot p(x)$

Section 4.2

Binomial Experiments
n = number of trials;p = p(success);
n! = p(failure);x = # of successes in n trialsBinomial Probability Formula: $\frac{n!}{(n-x)! \cdot x!} \cdot p^x \cdot q^{n-x}$ p(exactly x successes in n trials)

Calculator for Binomial Probabilities:

Probability of exactly x success: binompdf(n, p, x) Probability of "at most x successes" binomcdf(n, p, x)

Unusual Probabilities: p ≤ .05

Population Parameters of a Binomial Distribution

Mean: $\mu = n \cdot p$ Variance: $\sigma^2 = n \cdot p \cdot q$ Standard Deviation: $\sigma = \sqrt{n \cdot p \cdot q}$

CHAPTER 5

Section 5.1 To transform any x-value to a z-score use: z-score = $\frac{x - \mu}{\sigma} = \frac{value - mean}{standard deviation}$

Calculator to find an area that corresponds to a given z-score:

normalcdf(-10,000,z) = area to the left of z normalcdf(z, 10,000) = area to the right of z normalcdf(z₁, z₂) = area between two z's

Section 5.2

Finding Normal Distribution Probabilities

Finding the probability that x will fall in a given interval by finding the area under the normal curve for that interval

Calculator: normalcdf(x_1 , x_2 , μ , σ) (Probability from raw data (x's))

Section 5.3

Calculator to find the z-score for a given area or a percentile: invNorm(area)

Finding an x-value for a corresponding z-score

 $x = \mu + z\sigma$

Calculator to find an x-value for a given probability: Calculator: invNorm(area, μ , σ)

Section 5.4

Central Limit Theorem

If $n \ge 30$ or population is normally distributed, then:

$$\mu_{\bar{x}} = \mu$$
 and $\sigma_{\bar{x}}^2 = \frac{\sigma^2}{n}$ and $\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}}$

To transform $\bar{\mathbf{x}}$ to a *z*-score:

$$Z = \frac{\overline{X} - \mu_{\overline{X}}}{\frac{\sigma}{\sqrt{n}}}$$

Calculator: normalcdf (x₁, x₂, $\mu_{\bar{x}}$, $\frac{\sigma}{\sqrt{n}}$)

Section 5.5

You can use a normal distribution to approximate a binomial distribution if $np \ge 5$ and $nq \ge 5$. If this is true, then do the following:

1. Find μ = np and $\sigma = \sqrt{npq}$

- 2. Apply the continuity correction (Add or subtract 0.5 from the endpoints).
- 3. Use the **calculator** to find the binomial probability: normalcdf: (x_1, x_2, μ, σ)

CHAPTER 6

Section 6.1 (Confidence interval for the mean - large samples) **Margin of Error (E):** The greatest possible distance between \bar{x} and μ $E = Z_c \frac{\sigma}{\sqrt{n}}$

Confidence Interval: where "c" is the probability that the confidence interval contains μ $\overline{x} - E < \mu < \overline{x} + E$

Calculator: STAT \rightarrow TESTS Menu \rightarrow 7:Zinterval

Minimum Sample Size:

$$n = \left(\frac{z_c \sigma}{E}\right)^2$$

Section 6.2 (Confidence interval for the mean - small samples) Use when: σ is unknown, n < 30 and population is (approx.) normally distributed **Degrees of Freedom:**

 $d_{1}f_{1} = n - 1$

Critical Value = tc is found in Table 5 using d.f. and the confidence interval wanted.

Margin of Error (E):

$$\mathsf{E} = \mathsf{t}_{\mathsf{c}} \, \frac{s}{\sqrt{n}}$$

Confidence Interval: $\bar{x} - E < \mu < \bar{x} + E$

Calculator: STAT \rightarrow TESTS Menu \rightarrow 8:Tinterval

Section 6.3 (Confidence intervals for population proportions)

Population Proportion (p):

- probability of success in a single trial of a binomial experiment

- proportion of the population included in a "success" outcome (we are estimating this)

 $\hat{p} = \frac{x}{n} = \frac{\# \text{ of successes in the sample}}{\text{ sample size}}$

 $\widehat{\mathbf{q}} = \mathbf{1} - \widehat{\mathbf{p}}$

Confidence Interval for p: $\hat{p} - E$

Margin of Error (E):

 $E = z_c \sqrt{\frac{\hat{p} \hat{q}}{n}}$ ($n\hat{p} \ge 5$ and $n\hat{q} \ge 5$ for a normal approximation)

Calculator: STAT \rightarrow TESTS Menu \rightarrow A:1-PropZint

Minimum Sample Size:

$$\mathsf{n} = \hat{p} \, \hat{q} \, \left(\frac{\mathsf{z}_{\mathsf{c}}}{\mathsf{E}}\right)^2$$

CHAPTER 7

Section 7.1

Hypothesis Testing: Uses sample statistics to test a claim about the value of a population parameter.

H₀: µ ≥ k	H₀: µ ≤ k	H₀: μ = k
Ha: µ < k	H _a : μ > k	H _a : µ ≠ k
left-tailed	right-tailed	two-tailed

Level of Significance = α

The maximum allowable probability of making a Type I error. **P-Value (probability value)**

-The estimated probability of rejecting Ho when it is true (Type I error)

-The smaller the P-value the more evidence to reject H_o.

<u>Section 7.2 (Hypothesis testing for mean - large sample)</u>

z-Test $z = \frac{\overline{x} - \mu}{\frac{\sigma}{\sqrt{n}}} = \frac{\overline{x} - \mu}{\frac{s}{\sqrt{n}}} \text{ (if } n \ge 30 \text{, the } \sigma \approx s \text{)}$

Guidelines for Using P-Values

- 1. Find the z-score and then area of your data and compare it to α . can use normalcdf($\infty, \overline{x}, \mu_{\overline{x}}, \sigma_{\overline{x}}$) = area of data
- 2. If $P \leq \alpha$ then reject H_0 .

If $P > \alpha$ then fail to reject H_o .

Calculator: STAT \rightarrow TESTS Menu \rightarrow 1:Z-Test

Rejection Regions

-Range of values for which H_0 is not probable; If z-score for data is in this region reject H_0 .

Guidelines for Using Rejection Regions

- 1. Find the z-score that goes with α and sketch. (This delineates rejection region)
- 2. Find z-score for given data and add to sketch
- 3. Reject H_0 if data z-score is in rejection region.

Section 7.3 Hypothesis Testing for the mean - small samples using t-Distribution)

Using t-Test Guidelines

- 1. Find critical values (t-scores) for α using d.f. = n 1, and table 5 then sketch
- 2. Compute *t* for data and add to sketch
- 3. Reject H_0 if *t* for data is in rejection region delineated by critical values.

$$t = \frac{\overline{x} - \mu}{\frac{s}{\sqrt{n}}}$$

Using P-Values with t-Test

This can be done only with a graphing calculator **Calculator:** STAT \rightarrow TESTS Menu \rightarrow 2:T-Test

Section 7.4 (Hypothesis testing for a population proportion (p))

Test statistic = \hat{p} and standardized test statistic = z Must have: np \geq 5 and nq \geq 5 then use z-Test:

$$Z = \frac{\widehat{p} - p}{\sqrt{\frac{pq}{n}}}$$

Guidelines for Hypothesis Testing For a Population Proportion

- 1. check np and nq then find rejection regions for α and sketch
- 2. Find z-scores for data and add to sketch
- 3. Reject H_0 if data z-score is in rejection region.

Calculator: STAT \rightarrow TESTS Menu \rightarrow 5:PropZTest

CHAPTER 8

<u>Section 8.1</u> (Testing the difference between sample means - large sample) Necessary z-Test Conditions

- 1. Samples are randomly selected
- 2. Samples are independent
- 3. n≥30 **or** each population is normally distributed and σ is known.

Then $\bar{x}_1 - \bar{x}_2$ is normally distributed so you can use a z-Test (s₁ and s₂ can be used for σ_1 and σ_2)

$$z = \frac{(\bar{x}_1 - \bar{x}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$$

Calculator: STAT \rightarrow TESTS Menu \rightarrow 3:2-SampZTest

<u>Section 8.2</u> (Testing the difference between sample means - small sample) -n<30 and σ is unknown

-Samples must be independent, randomly selected and normally distributed

If the variances are equal use the following to compute t (pooled estimate):

$$t = \frac{(\bar{x}_1 - \bar{x}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}}} \quad \text{and} \quad d.f. = n_1 + n_2 - 2$$

If the variances are not equal use the following to compute t :

$$t = \frac{(\bar{x}_1 - \bar{x}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} \quad \text{and} \quad d.f. = \text{smaller of } (n_1 - 1) \text{ and } (n_2 - 1)$$

Calculator: STAT \rightarrow TESTS Menu \rightarrow 4:2-SampTTest Pooled: Yes or no

<u>Section 8.4</u> (Testing the difference between population proportions) To use a z-Test

- 1. The samples are independent and randomly selected.
- 2. n_1p_1 , n_1q_1 , n_2p_2 , n_2q_2 all \geq 5 (large enough to use a normal sampling distribution)

Weighted Estimate of p1 and p2

 $\overline{p} = \frac{x_1 + x_2}{n_1 + n_2} \quad x_1 = n_1 \widehat{p_1} \quad \text{and} \quad x_2 = n_2 \widehat{p_2} \qquad (\text{assume that } p_2 - p_1 = 0)$

 $\overline{q} = 1 - \overline{p}$ (Condition needed: $n_1 \overline{p_1}$, $n_1 \overline{q_1}$, $n_2 \overline{p_2}$, $n_2 \overline{q_2}$ all ≥ 5)

$$\mathsf{Z} = \frac{(\widehat{p_1} - \widehat{p_2}) - (p_1 - p_2)}{\sqrt{\overline{p}\overline{q}\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$$

Calculator: STAT \rightarrow TESTS Menu \rightarrow 6:2-PropZTest

CHAPTER 9

Section 9.1

Correlation Coefficient (r)

-measures the direction and strength of a linear correlation between two variables -range: $-1 \le r \le 1$

Correlation Coefficient Formula

$$r = \frac{n\sum xy - (\sum x)(\sum y)}{\sqrt{n\sum x^2 - (\sum x)^2} \sqrt{n\sum y^2 - (\sum y)^2}}$$

Calculator: STAT \rightarrow Edit \rightarrow L₁ (enter x-values) and L₂ (enter y-values), then STAT \rightarrow CALC Menu \rightarrow 4: LinReg (ax + b) \rightarrow enter

Testing a Population Correlation Coefficient With Table 11

- 1. Determine n = # of pairs.
- 2. Find the critical values for α using Table 11.
- 3. If |r| > c.v. the correlation coefficient of the population can be determined to be significant.

Hypothesis Testing for a Population Correlation Coefficient $oldsymbol{ ho}$

 $H_0: \rho = 0$ (no significant correlation) $H_a: \rho \neq 0$ (significant correlation)

$$t = \frac{r}{\sqrt{\frac{1-r^2}{n-2}}} \qquad d.f = n-2$$

Section 9.2 Equation of a Regression Line:

 $\hat{y} = mx + b$

CHAPTER 10

Section 10.1

Chi-Square Goodness-of-fit Test: Used to test whether a frequency distribution fits an expected distribution.

Ho: The frequency distribution fits the specified distribution

Ha: The frequency distribution does not fit the specified distribution.

 $E_i = np_i$

- n = the number of trials (sample size)
- p_i = the assumed probability of the specific category.

Conditions Needed:

- 1. The observed frequencies must be obtained using a random sample
- 2. Each $E \ge 5$

$$x^2 = \sum \frac{(O-E)^2}{E}$$
 d.f. = k - 1 (k = # of categories in the distribution)

Guidelines For Performing a Chi-Square Goodness-o-Fit Test

- 1. Use d.f. and Table 6 to find the critical values and sketch the rejection region
- 2. Compute x^2 and add to sketch.
- 3. If x^2 is in rejection region reject Ho.

Section 10.2

Chi-Square Independence Test: Used to determine whether the occurrence of one variable affects the probability of the occurrences of the other variable.

$$x^{2} = \sum \frac{(O-E)^{2}}{E}$$
 d.f. = (r - 1)(c - 1) (r = # of rows and c = # of columns)

Guidelines For Performing a Chi-Square Independence Test

- 1. Use d.f. and Table 6 to find the critical values and sketch the rejection region
- 2. Compute x^2 and add to sketch.
- 3. If x^2 is in rejection region reject Ho.