FACTORING BINOMINALS

Greater Common Factor (GCF)

For example, consider the binomial $8x^2 + 12x =$ think of the factors of each term = 4*2*x * x + 4*3*x

A. Look for a number and/or variable that are **common to both** terms.

1. Greatest common number is 4 (although "2" is also common to both terms,

it is not the greatest.)

2. The common variable for both terms is "x" with the smallest

exponent, in this case is x^1 .

3. Finally, combining the common numbers with common variables, we get

the GCF = 4x.

B. Divide each term by GCF.

$$\frac{8x^2}{4x} + \frac{12x}{4x} = 2x + 3$$

C. Rewrite the expression with GCF outside parentheses and the remainder after division inside. Note: the gcf is part of the factored form – don't drop it off
 4x(2x+3)

D. Examples: $2x^3 + 36x^2 - 12x = 2x(x^2 + 18x - 6)$

$$9yx^{3} + 3yx + 6y^{2}x^{2} = 3yx(3x^{2} + 1 + 2yx)$$

FACTORING BINOMIALS - SPECIAL CASES

A. Difference of Squares $A^2 - B^2 = (A-B)(A+B)$

First, identify that you have the difference of perfect squares!!!

EXAMPLES OF PERFECT SQUARES

VARIAE	<u>BLES</u>	COMBINATIONS
$a^2 b^2$	$\mathbf{x}^2 \mathbf{y}^2$	25x ²
$a^4 b^4$	x ⁴ y ⁴	64b ⁴
$a^6 b^6$	x ⁶ y ⁶	9a ⁶
a ⁸ b ⁸	x ⁸ y ⁸	81y ⁸
$a^{10} b^{10}$	$x^{10}y^{10}$	16x ¹⁰
EXAMPLES OF PerfectSquare $\overline{9y^6}$ Ference OK	BINOMIALS perfectSquare 2) $\overline{x^2}$	NotaPerfectSquare 27 Difference NOT OK
$\begin{array}{c} & PerfectSquare \\ + & 81y^6 \\ \hline TaDifference \\ \textbf{OT OK} \end{array}$	4) $25x^4$	PerfectSquare - 81 Difference
	$\frac{\text{VARIAE}}{a^2 b^2}$ $a^4 b^4$ $a^6 b^6$ $a^8 b^8$ $a^{10} b^{10}$ $\frac{\text{EXAMPLES OF}}{9y^6}$ $\frac{PerfectSquare}{9y^6}$ OK $\frac{PerfectSquare}{81y^6}$ DTA OK	$\frac{\text{VARIABLES}}{a^2 b^2 x^2 y^2}$ $a^4 b^4 x^4 y^4$ $a^6 b^6 x^6 y^6$ $a^8 b^8 x^8 y^8$ $a^{10} b^{10} x^{10} y^{10}$ $\frac{\text{EXAMPLES OF BINOMIALS}}{a^{10} b^{10} x^{10} y^{10}}$ $\frac{\text{PerfectSquare}}{9y^6} 2) x^2$ $\frac{perfectSquare}{81y^6} 4) 25x^4$ $\frac{perfectSquare}{25x^4}$ $\frac{\text{PerfectSquare}}{25x^4}$

Example1: factor \mathbf{X}^2 - 4.

- 1. Identify the perfect squares of both terms: in this case are \mathbf{X}^2 and $\mathbf{2}^2$
- 2. Make sure that the expression is a difference (means minus (–) between the terms).
- 3. Take the $\sqrt{}$ of the first term and use that as the first term in each factor $\sqrt{x^2} = X$.
- 4. Take the $\sqrt{}$ of the second term and use that as the second term in each factor $\sqrt{4} = 2$.
- 5. Make the signs in each factor opposite (+)(-).
- 6. Use the results of the square roots is the factoring process:

Ex:
$$4x^2 - 9y^6 = (2x - 3y^3)(2x + 3y^3)$$

 $x^2 - 81 = (x+9)(x-9)$