FACTORING BINOMINALS

Greater Common Factor (GCF)

For example, consider the binomial $8 x^{2}+12 x=$ think of the factors of each term $=\underline{4^{*} 2^{*} x} \underline{*} \underline{x}+\underline{4} * \underline{3} \underline{*} \underline{x}$
A. Look for a number and/or variable that are common to both terms.

1. Greatest common number is 4 (although " 2 " is also common to both terms, it is not the greatest.)
2. The common variable for both terms is " x " with the smallest exponent, in this case is x^{1}.
3. Finally, combining the common numbers with common variables, we get the GCF $=4 x$.
B. Divide each term by GCF.

$$
\frac{8 x^{2}}{4 x}+\frac{12 x}{4 x}=2 x+3
$$

C. Rewrite the expression with GCF outside parentheses and the remainder after division inside. Note: the gcf is part of the factored form - don't drop it off $4 x(2 x+3)$
D. Examples: $2 x^{3}+36 x^{2}-12 x=2 x\left(x^{2}+18 x-6\right)$

$$
9 y x^{3}+3 y x+6 y^{2} x^{2}=3 y x\left(3 x^{2}+1+2 y x\right)
$$

A. Difference of Squares
 $A^{2}-B^{2}=(A-B)(A+B)$

First, identify that you have the difference of perfect squares!!!

EXAMPLES OF PERFECT SQUARES

NUMBERS	$\frac{\text { VARIABLES }}{a^{2} b^{2} x^{2} y^{2}}$	COMBINATIONS
4	$a^{4} b^{4} x^{4} y^{4}$	$25 x^{2}$
9	$a^{6} b^{6} x^{6} y^{6}$	$64 b^{4}$
16	$a^{8} b^{8} x^{8} y^{8}$	$9 a^{6}$
25	$a^{10} b^{10} x^{10} y^{10}$	$81 y^{8}$
		$16 x^{10}$

EXAMPLES OF BINOMIALS

1) $\overbrace{4 x^{2}}^{\text {perfectSquare }}$

OK

NOT OK

OK

Example1: factor \mathbf{X}^{2} - 4.

1. Identify the perfect squares of both terms: in this case are \mathbf{X}^{2} and $\mathbf{2}^{2}$
2. Make sure that the expression is a difference (means minus (-) between the terms).
3. Take the $\sqrt{ }$ of the first term and use that as the first term in each factor $\sqrt{x^{2}}=\mathbf{X}$.
4. Take the $\sqrt{ }$ of the second term and use that as the second term in each factor $\sqrt{4}=2$.
5. Make the signs in each factor opposite $(+)(-)$.
6. Use the results of the square roots is the factoring process:

Ex: $4 x^{2}-9 y^{6}=\left(2 x-3 y^{3}\right)\left(2 x+3 y^{3}\right)$

$$
x^{2}-81=(x+9)(x-9)
$$

