ALGEBRA

QUADRATIC FORMULA

If $A X^{2}+B X+C=0 \quad($ where $A \neq 0)$
then $\mathrm{X}=\frac{-B+\sqrt{B^{2}-4 A C}}{2 A}$ or $\mathrm{X}=\frac{-B-\sqrt{B^{2}-4 A C}}{2 A}$.
These two solutions are also written as

$$
\mathrm{X}=\frac{-B \pm \sqrt{B^{2}-4 A C}}{2 A}
$$

FACTORING

$$
\begin{aligned}
X^{2}-Y^{2} & =(X+Y)(X-Y) \\
X^{3}+Y^{3} & =(X+Y)\left(X^{2}-X Y+Y^{2}\right) \\
X^{3}-Y^{3} & =(X-Y)\left(X^{2}+X Y+Y^{2}\right) \\
X^{4}-Y^{4} & =\left(X^{2}+Y^{2}\right)\left(X^{2}-Y^{2}\right) \\
& =\left(X^{2}+Y^{2}\right)(X+Y)(X-Y) \quad \text { efinal answer> }
\end{aligned}
$$

EXPONENTS AND RADICALS

$$
\begin{array}{ll}
\mathrm{A}^{0}=1 \quad(\text { where } \mathrm{A} \neq 0) & \left(\frac{A}{B}\right)^{X}=\frac{A^{X}}{B^{X}} \\
\mathrm{~A}^{\mathrm{X}} \mathrm{~A}^{Y}=\mathrm{A}^{X+Y} & \frac{A^{X}}{A^{Y}}=A^{X-Y} \\
(\mathrm{AB})^{\mathrm{X}}=\mathrm{A}^{\mathrm{X}} \mathrm{~B}^{\mathrm{X}} & \left(\mathrm{~A}^{X}\right)^{Y}=\mathrm{A}^{X Y} \\
A^{-X}=\frac{1}{A^{X}} & A^{\frac{X}{Y}}=(\sqrt[Y]{A})^{X}=\sqrt[Y]{A^{X}}
\end{array}
$$

